A LOOP-FREE ALGORITHM BASED ON PREDECESSOR INFORMATION

Shree Murthy and J.J. Garcia-Luna-Aceves
University of California
Santa Cruz, CA 95064
shree, jj@cse.ucsc.edu

Abstract

The loop-free predecessor based routing algorithm
(LPRA), is presented. This algorithm eliminates the for-
mation of temporary routing loops without the need for
internodal synchronization spanning multiple hops or the
specification of complete path information. Like other al-
gorithms, LPRA operates by specifying the second-to-last
hop and distance to each destination; in addition, it uses
an interneighbor synchronization mechanism. A detailed
proof of correctnessis presented and its complexity is eval-
uated. Its performance is compared by simulation with an
ideal link-state algorithm and a loop-free algorithm (called
DUAL) that is based on internodal coordination spanning
multiple hops; both algorithms are representative of the
state of the art in distributed routing algorithms. The sim-
ulation results show that LPRA is a better alternative than
thosetwo algorithmsinterms of the number of stepsneeded
to converge after atopological change and iscomparableto
DUAL intermsof the number of messagesand CPU cycles
needed to converge after atopological change.

1 Introduction

Many of the routing protocols used in today’s networks
are based on the distributed Bellman-Ford a gorithm (DBF)
for shortest-path computation [2]. However, DBF suf-
fers from the bouncing effect and the counting-to-infinity
problems [11]. Recently, distributed shortest-path algo-
rithms [1, 7, 8, 10, 12] that utilize information regard-
ing the length and second-to-last hop (or predecessor) of
the shortest path to each destination have been proposed
to eliminate the counting-to-infinity problem of DBF. We
call these type of algorithms path-finding algorithms. Al-
though these algorithms provide a marked improvement
over DBF, they do not eliminate the possibility of tempo-
rary loops. The loop-free algorithms reported to date rely
on mechanisms that require routes either to synchronize
along multiple hops[4, 3, 9], or exchange path information
that can include al the nodes in the path from source to
destination [6].

*This work was supported in part by the Office of Naval Research
under Contract No. N-00014-92-J-1807 and by the Advanced Research
Projects Agency (ARPA) under contract F19628-93-C-0175

In this paper, we present a path-finding algorithm that is
loop-free at every instant. We call this algorithm the loop-
free predecessor-based routing algorithm (L PRA). Accord-
ing to LPRA, update messages are sent only to neighboring
nodes. LPRA eliminatesall temporary loopsby implement-
ing an interneighbor coordination mechanism with which
potential temporary loops are blocked before routers can
forward datathrough them. To block a potential temporary
loop, a node sends a query to all its neighbors reporting an
infinite distance to a destination, before changing its rout-
ing table; the node is free to choose a new successor only
when it receives the replies from its neighbors. To reduce
the communication overhead incurred with interneighbor
coordination, nodes use a feasibility condition to limit the
number of times when they have to send queries to their
neighbors. In contrast to many prior loop-freerouting algo-
rithms [3, 4, 9], queries propagate only one hop in LPRA.
Furthermore, updates and routing-table entries in LPRA
require a single node identifier as path information, rather
than a variable number of node identifiersasin prior algo-
rithms [6].

Section 2 presentsthe network model assumed in LPRA.
Section 3 provides a description of the algorithm and an
exampleillustrating key aspects of its operation. Section 4
provides adetailed proof of LPRA's correctness. Section 5
addresses the performance of LPRA. Finally, Section 6
presents our conclusions.

2 Network Modd

A computer network is modeled as an undirected graph
representedasG(V, E'), whereV istheset of nodesand E'is
the set of links connecting the nodes. Each node represents
arouter and isacomputing unit involving aprocessor, local
memory and input and output queueswith unlimited capac-
ity. A functional bidirectiona link connecting the nodes
¢ and j is represented as (7, j) and is assigned a positive
weight in each direction. The link is assumed to exist in
both the directions at the same time. All the messages re-
ceived (transmitted) by anode are put in the input (output)
gueue on afirst-come-first-serve basis and are processed in
that order. An underlying protocol assures that: (a) every
node knows who its neighbors are; thisimplies that anode
within afinite time detects the existence of anew neighbor
or the loss of connectivity with a neighbor. (b) all packets
transmitted over an operational link are received correctly
and in the proper sequence within afinite time; and (c) all

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Loop-Free Algorithm Based on Predecessor Information £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Santa Cruz,Department of Computer REPORT NUMBER
Engineering,Santa Cruz,CA,95064

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 9
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

update messages, changesin thelink-cost, link failuresand
link recoveries are processed one at atime in the order in
which they occur.

Each nodeisrepresented by auniqueidentifier. Any link
cost can vary in time but is always positive. The distance
between two nodes in the network is measured as the sum
of the link costs of the shortest path between the nodes.

A nodefailureismodeled asall thelinksincident onthat
node failing at the sametime. A change in the operational
status of a link or a node is assumed to be notified to its
neighboring nodes within afinitetime. These services are
assumed to be reliable and are provided by the lower level
protocols.

A path from node i to node j is a sequence of nodes
where (i, n1), (ng, ng4+1), (nr, j) aelinksin the path. A
simple path from i to j is a sequence of nodes in which
no nodeis visited more than once. The paths between any
pair of nodesand their corresponding distances change over
time in a dynamic network. At any point in time, node i
is connected to node j if a path exists from i to j at that
time. The network is said to be connected if every pair of
operational nodes are connected.

The successor to destination j for any node is simply
referred to as the successor of the node, and the same ref-
erence appliesto other information maintained by a node.
Similarly, updates, queries and responses refer to destina-
tion 7, unless stated otherwise.

3 LPRA Description

Each node maintainsadistancetable, arouting table and
alink-cost table. The distance tableis a matrix containing
the distance and the predecessor entriesfor all destinations
through all the neighboring nodes. The routing table is a
column vector containing the minimum distance entriesfor
each destination and its corresponding predecessor and suc-
cessor (or next hop) information, which can be extracted
fromthedistancetable. Theimplicit path information from
a node to any destination node can be extracted from the
predecessor entries of the node's distance and routing ta-
bles. Thelink-cost table lists the cost of each link adjacent
to the node; the cost of a failed link is considered to be
infinity.

LPRA is specified in pseudocodeformin Figure 1. Pro-
ceduresInitl and Init2 are used for initialization. Topology
changes, handling of the feasibility condition (FC), path
traversal inthe distancetabl e and updating of therouting ta-
blesare done by procedureslinkUp, linkDown, linkChange,
FC, in_path and rt_update respectively. ProceduresUpdate,
Query and Reply handles the updates, queries and replies
respectively.

An update message consists of the source and the desti-
nation node identifiers, the path information and an update
flag for one or more destinations. The update flag indicates
whether the received message entry is an update (flag=0),
query (flag=1) or a response (flag=2). The time at which
an update message was sent and the number of hops the
message has traversed so far can be recorded as well. The
distance entry in aquery is always set to co.

In LPRA, anode can bein one of the two statesfor each
destination, passive or active. A node is passive if it has

a feasible successor, or has determined that no such node
existsand isactiveif it issearching for afeasible successor.
A feasible successor for node i with respect to destination
Jj isaneighbor node that satisfies the feasibility condition
(FC). When node i ispassive, it reports Dj in al itsupdates
and replies. However, while the node is active, it sends
an infinite distance in its replies and queries. Feasibility
condition (FC) is defined as follows:

If at time ¢ node i needsto update its current successot,
it can choose as its new successor s;(t) from any node
n € N;(t) such that ¢ is not present in the implicit path
to j reported by neighbor n, D5, + din(t) = Dpmin =
Min{Dj, + dix(t)|z € N;(t)} and D}, < F'D;(t). 1f no
such neighbor exists and D; = oo, node ¢ must keep its
current successor. If D,,,;,, = oo then 8 (t) = null.

The successor graph for destination ;5 € G, denoted
by S;(G), is adirected graph where nodes are the same
nodes of G and where directed links are determined by the
successor entriesin thenodal routing tables. Loop-freedom
isguaranteed at all timesin G if S;(G) isalwaysadirected
acyclic graph.

When a node i processes an update from its neighbor
k for destination j, the distance and predecessor entries
in the distance table are updated (Step 1). Also, node i
determines whether the path to destination 5 through any
of its other neighbors {6 € N;|b # k} includes node &. If
the path implied by the predecessor information reported
by nodeb to destination j includesnode £, then the distance
entry of that path is updated as D}, = Dy, + D} and the
predecessor entry is updated as p;;, = p}“ (Step 2). Thus,
a node can determine whether or not the update received
from k affectsits other distance and routing table entries.

When node is in the passive state and detects a cost
change in link (7, k) or receives an update or query from
neighbor £, it first updates its link-cost table with the new
vaueof thelink d;,, itsdistancetablewith D}k = D}“ +d;p
and p}, = pj.. After that, it determines whether or not the
node has a feasible successor, i.e, a neighbor node that
satisfies FC.

If afeasible successor is found, node i updates its dis-
tanceand predecessor entriesof itsdistancetableby travers-
ing through al itsother neighbors (Step 2) and then updates
the routing table entries accordingly. Node i sends update
messages to its neighbors if the routing table entries have
changed. Furthermore, node: sets F D} equal to thesmaller
of the updated value of D} and the present value of F'D;.

If node ¢ does not find a feasible successor, then F"D;
is set to co. In addition, node i keeps its current path
information and updates the distance entry in the distance
table (Steps1and 2). If D (t) = oo, then s} (¢)=null. Node
i also sets the reply status flag (r;,, = 1) for al k € N;
and sends a query to all its neighbors. Node i is then said
to be active, and cannot change its path information until it
receives all therepliestoits query. If theinput event was a
guery from its neighbor after which i became active, node
1 responds to its neighbor k£ with the distance of its reply

set to co. A node need not query its neighbor node % due
to which node 7 became active. Instead, anode can send a

reply withinfinite distance. If node k becomes passive after
receiving node ¢'s reply and changes its path information,
then this change will be notified to node i by an update
message.

When node isactiveand receivesareply from nodek, it

updatesitsdistance tableand resetsthereply flag (r;'. . = 0).

Node i becomes passive at time ¢ when rj.k(t) =0

for every k € N;. At that time, node i can be certain
that all its neighbors have processed its query reporting an
infinite distance and node : is therefore free to choose any
neighbor that providesthe shortest distance, if thereisany;
or node ¢ has found a feasible successor through one of its
neighbors & € N;. If such a neighbor is found, node :
updates the routing table as the minimum in distance-table
row for destination j and also updates /" D; = D).

A nodeneed not havetowait indefinitely for repliesfrom
itsneighborsbecauseanoderepliesto all itsqueriesregard-
less of its state. Thus, there is no possibility of deadlocks
due to the interneighbor coordination mechanism.

If node ¢ is passive and has aready set D; = oo and
receives an input that implies an infinite distanceto j, then
node i simply updates D}, and d;; and sends a reply to
node k with aninfinite distance if the input event isaquery
from node k. This ensures that updates messageswill stop
in G when a destination becomes unreachable.

Node i initializes itself in passive state with an infinite
distance for all its known neighbors and with a zero dis-
tanceto itself. After itsinitialization, node i sends updates
containing the distanceto itself to all its neighbors.

When node i establishes a link with a neighbor &, it
updates its link-costs table and assumes that node & has
reported infinitedistancesto all destinationsand hasreplied
toany query for which node i isactive; furthermore, if node
k isapreviously unknown destination, node initializesthe
path information of node k£ and sends an update to the new
neighbor k for each destination for which it has a finite
distance. When node is passive and detectsthat link (z, &)

hasfailed, it sets d;;, = oo, D}k = oo and p;k:NIL; after
that, node ¢ carries out the same steps used for the reception
of alink-cost change message in passive state. When node
i isactive and loses connectivity with aneighbor k, it resets
the reply flag and resets the path information i.e, assumes
that theneighbor & sent areply reporting aninfinitedistance.

The addition or failure of anodeishandled by its neigh-
bors as all the links connecting to that node coming up or
going down at the same time.

In contrast to LPRA, which makes a node ¢ check the
consistency of predecessor information reported by all its
neighboring nodes each time an update is processed, Hum-
blet's and other earlier path finding algorithms [1, 10, 8]
check the consistency of the predecessor information only
for the neighbor associated with the input event. In
LDR [5], the path information is sent to the neighbors by
an explicit label. Unlikethat, in LPRA, path informationis
extracted by the predecessor information; Therefore, fixed
size update entries can be used, rather than variable size
entries that can contain the complete path in some cases.

Asanexampleof L PRA soperation anditsloop-freedom
property, consider the five-node network depicted in Fig-
ure 2. In this network, links and nodes have the same
processing or propagation delays; @) representsthe queries,

oint3a <2 b(nf2a)
@ “

R(mf,&x a /R(ml,(p)

(%) a

(inf, 100,8)

j(0.0) 10 (4,48 1(00)) d (442 1000 Figg @100

Step 1 Step 2

u(15,d)

R(inf,)

o(inf,3:) b(inf.2,3) (16,16,d) uaed b(14,14,d) €(1515d) —~ b(14.14d)
® ® o <
u(mn) u(3d) Uasa N

a(1313d) a13134)

U(13d) O\ Vg

o)) d (4,10.d) §(00) d4,10d) 100) d(4,10d)
Step 3 Step4 Step S

Figure 2: Example of the Algorithm’sOperation

Rrepliesand U indicatesupdates. Theworking of thealgo-
rithm is explained when the cost of thelink («, j) changes.
The arrowhead from node z to node y indicates that node
y is the successor of node » towards destination j (i.e,
s7 = y). Thelabel in parenthesis assigned to node z in-
dicates the feasible distance from z to j (#"D7), current
distance (D7), and predecessor of the path from z to j (p7).
Steps 1 through 5 of Figure 2 depictsthe behavior of LPRA.
Update and reply messages arefollowed by thevalue of rd7
and rp] in parentheses. Nodes in the active state are indi-

cated with acircle around them. F’ D; isawaysdecreasing

aslong as node i isin the active state.

When node a detects the change in the cost of the link
(a, 7), it determinesthat it doesnot haveafeasiblesuccessor
as none of its neighbors have a distance smaller than F" Dj

= 1. Accordingly, node a becomes active by setting the
reply status flag r{, for all its neighbors for destination j

and sendsa query to all its neighbors (Step 1).

Nodes b and ¢ also recognize that they do not have a
feasible successor. Thisis achieved in asingle step asthe
node traces through all its neighbors on receipt of an input
event (Step 2 of the pseudocode). Node b (¢) becomes
active and sends query to ¢ (b) and reply to a. On the other
hand, node d is able to find a path to j and replies with the
cost of the alternate path to j to node a’s query and updates
its distance to j maintaining the same feasible distance.

When node a receives replies from al its neighbors, it
becomes passive again, and repliesto the queries of nodess
and ¢ with itsfeasible distance. Having found their feasible
successor, nodes b and ¢ update their path information ac-
cordingly. All nodes exchange update messages informing
the new path information with their neighbors (Step 4) and
the final stable topology is shown in Step 5.

4 Correctness of LPRA

Time T is defined such that links and nodes can go up
and down and the cost of links can change within time
interval [0,77). Attime T, the nodes adjacent to each link
have updated their link cost and status information, and
there are no more changes after time 7". An upstream node

Procedure Update(k)
when vector V%> ¥ is received onlink (¢, k)

Procedurenitl ProcedureFC dobegin
when node i initilizesitself do begin (10) begin (0) begin b
set alink-state table with the current costs of thelinks _ i iy. RTEMP' — ¢, DTEMP" % — ¢V neighborsb
stN = i; N; = {z|d;;, < co}; oompuleVl_{n|neNl,Djn <FDj}’ end
for al (x € N;)dobegin compute D, 5y = Min{D% +d; |z € N;}; (1) for eachtriplet (j, D¥, p*¥)in vk j 2 ¢
) jz » s s
call Procedure Init2(x); compute Vi = { | vi. Dt 4. =D s do begi R
forall (j € N)dobegin compute V = {nfn € V1, Dj, + din = Dmin i o begin N ; X
@Dl = ooipl, = null; if (v = o) Dig = Pj tdigivg, —rj
S 0 7 then return (false); (2) for al neighbors b
®rip = elsereturn (true); if k isin the path fromi to j in the distance
end end table through neighbor &
end : Dl — DY 4 Dk pi o pk
stsi = i,pi =i, D! = FD! =0 b kb L 4
for & hin € Y) i i ProcedureRT -Update end
or each (n f begin (Qif(r:i =0,vz € N;)
do add update U (1) toend of LI ST; (n); initialize all destinationsto be unmarked thmif(ngsm;ied) begin ‘
call Procedure Send for any unmarked destination 7 do begin it i i
end i if there is no finite distancein row 7 ! ((Dj #Foo)V (Djk # ©9))
kF)’rgcedurelnnZ then mark j as undetermined then begin
egin else begi i .
SN =N U RSN SAF DL = Dpyini
setp’ =1, 5% = null; for each node having minimum distance from s to 7 Call Procedure RT Upddte
J J . P Add updatesto LI ST;(n), ¥n € N,
T i if (k = successor) 13 i
setD! = FD’ = oo L end
end x x then maintain the same path and successor end
ProcedureLink Down(z, k) elsebegin i elsebegin
(8 when lrk (5, k) failsdobegin e P TV =TV U FD!=ooirl, =1,vk € N;;
e column for neighbor & in D ;; .
PR Haps ' repet e — poy, TV — TV Ue if (k= mull)’
) th = % T =5 until Dzb is not minimum of rowaorpzb = iorp(’:b D' = oo; p% =null;
if (D% # o0) is marked i kJ . k.
. S . dseD’ = DY 4+ d;p;p. =p;
then goto Step (3); if (p*, ismarked as undetermined) or . 7
end chl_z i ! Add queriesto LIST; (k),Vk € N;;
ProcedureLink Up(¢, k, d ;) (cb 'S mlnlmumo row <)) - end .
(6) when link (¢, %) comesup do begin then ma{k each nodeinT" V' as undetermined; 4 eIse‘begln‘
insert column k in D ; ; updatelink-cost table; else begin . . if (& |sthesjccmr)
wtri =0 mark each nodein T" V" as determined then begin
ik ' Dt — DU ;pl — pl sl — b stD! = DX 4 d;p;
Execute Procedure Update(k) 3 Jb' T3 gb' g J k 3
Send the entire routing table to & ; dend Sﬁp; =ry
end en end
Procedure Link_Change(z, k) end end
(7)when d ;3. changes value do begin dend end
update link-cost table; update distance table; en
execute Procedure Update(k) copy the routing vector to V' * if the distance or the (Psr)og:iweQuery(k)
end predecessor has changed Dl = rdf 4 d.y et = k.
Procedure Send end Dy = ré + ikiPi = TP
begin if (7 = 1)
for each (n € IV;) dobegin then add reply with D * to LI ST; (k)
if (LIST;(n) isnotempty) ProcdureReply(k) else begin ‘
then send message M ; [L I ST; (n)] ton (9) begin N if(rl_ =0,vz € N;)
Empty LIST;(n) setD?k = rd” +dk.‘;pl,k =rpi; x .
end - 7 . 7 7 thenif (D} = 00) A (D}, = c0))
T =0
end Tk then add reply with D to LI ST; (k);
Procedure M essage if(r®. =0,vn € N;) . 7 '
when node 1 receives a message begin th ka . esebegn
for each entry in the message ?F?msarsf'ed if (FCis satisfied)
do begin Ith(bIS' isfied) then add reply with D® to LI ST; (k))
Check the type of the message en eng : esebegin J
0: [Entry is an update message] 'f((Dj # o) Vv (Djk # o0)) @Dl =Dl 44 I
Call Procedure Update(k) then begin 7T st ist Py T PL
1: [Entry isan query] sFD! =D - 3 7 3
Call Procedure Query(k) 7 mn foreachn € N; — k dobegin
2: [Entry isanreply] (A:Z‘(Ii B’SdorurteRg}Ugd;’ley v N set T;n =1, FD? = oo;
esto S i
Call Procedure Reply(k) end i(), Vo € N; Addqueryto LIST; (n)
end end end
end X i -
dlse begin sri =0
ProcedureIn_Path(i, k, 7, b) selD; = oo; p; =null; Add reply with oo to LI ST; (k)
begin end end
seth — p; . end d end
.] , ; en
if (h = 1) dsebegin else begin
then retum(false) itk =s%) if(k = st)
else begin then begin th b_,]
if(h = k) stD? = rd% 4 d.y:pt = rpk: en begin)
then return(true) T + ik Py = TPy stDi = ra¥ + d;pipt = rp¥;
elseln_Pah(i, k, k, b); de"d end 7 7 7
en
| end end Addreply with o to LI ST; (k);
en end
end

end

Figure 1: LPRA Specification

with respect to node i is a node which is in the path from
source 7 to destination j.

Proposition 1 If aloop is formed in the successor graph
S;(G) for thefirst timeat timet, then somenode: € C;(t)
must choose an upstream node as its successor at time¢.

By definition, the successor graph S;(G) is a directed
acyclic graph before the loop isformed at timet. If aloop
has to be formed at time ¢, there must be at least one node
k € S;(@G) that changesits successor because the successor
information can be changed only when an update occurs or
when the node detectsachangeinalink cost or status. This
impliesthat an upstream node will be chosen by some node
z € Cj(t).0

Lemmal LPRA isfree of deadlocks.

Proof: A node: can bein one of the two states— active or
passiveat any giventime. A node receives updates, queries
or replies at any given time.

Whenthenodeisinthe active state, if aquery isreceived
from a neighbor, the node replies to these queries with an
infinite distance since the node is still in the process of
computing its path information at that time (active state).
The node updates its distance table entries when either an
update or reply message is received in active state.

When the node in passive state receives a message from
its neighbor, it computes the feasible distance and updates
itsdistance and routing tables accordingly and repliesto the
neighbors queries with its feasible distance to the destina-
tion. If afeasible distanceis not found, the node forwards
the query to is neighbors and sends areply with an infinite
distance entry to the originator of the query.

Since a node always replies to the neighbor’s queries,
deadlock cannot occur. O

Lemma2 The change in the cost or status of alink will
be reflected in the distance and the routing tables of anode
adjacent to the link within afinite time after time 7"

Proof: The change in the link cost can be due to the link
coming up, the link going down, or the link changing the
link cost.

When a link comes up, a new column entry is added
to the distance table and the new link-cost is assigned to
the corresponding entry in the distance table (Step (6)).
Procedure RT _Update is called, which eventually updates
the routing table entry.

When alink goes down, the column entry is deleted and
the distance entries in the distance table will be set to oo
(Step (5)). Procedure RT_Update again updates the routing
table entries accordingly.

When the link cost changes, the distance entry in the
distance table is updated to reflect the new link cost (Step
(1) and Step (2)). These changes are updated in the routing
table again by Procedure RT_Update.

By assumption, any changesthat occur in the time inter-
val [0, T") are updated by time 7"; this implies that the link
cost changes are reflected in the distance and routing tables
of aneighbor node within afinitetime7". O

Lemma3 Within a given finite time interval [0,?), the
number of shortest distance valuesto agiven destinationin
arouting tableisfinite.

Proof: Thereis a finite number of links in the graph with
a finite number of link cost changes within a given time
interval [0, ¢). Therefore, the cardinality of the set isfinite.
Also, the number of destinations in the graph are finite.
Thisimplies, there are finite number of entriesstored inthe
routing table of each node.

The value of the shortest distance from any node in G

to a given destination at time ¢ is equal to the cost of the
link or the sum of the distance from the successor node to
the destination and the link cost to the successor node or
infinity if a node does not have a successor. This implies
that there are finite number of values from a node to its
destination in the timeinterval [0, ¢). O

Theorem 1 A finite time after time 7', the routing table
structures at all nodes form the final shortest path.

Proof: The proof consists of showing that the old distance
and predecessor information present in any one node’ srout-
ing and distance tables are updated, and that the shortest-
path trees are eventually computed.

A change in the cost of alink results in a routing table
update by the nodes associated with that link (procedure
RT_Update) as required. When a node has to select a new
path, al the minimum distance entries in the distance table
are found. These minimum distance entries can be ob-
tained by finding the minimum of the distance table entries
for a given destination. Also, the loop freedom of the im-
plicit path can be ensured by the predecessor information
present in the node’ srouting and distance tables (procedure
in_path). This impliesthat K, the number of hopsin the
pathisfinite. If the current successor isthe sameasthe suc-
cessor for any of these minimum distance entries, then the
current path information is retained. The resulting path is
the shortest path in the final graph; otherwise, the new path
information is computed and the routing table is updated
accordingly.

It follows from the design of LPRA that, if node ¢ does
not have a path to node j, the distance in the routing table
is set to co. Because the number of hops K is finite, and
H(i,d), the maximum number of links in the path from :
whose distance to any node is less than or equal to d in the
final topology is finite, all paths have afinal shortest path.

Lettheinitial timebeT'(0) = 7'. LetT(K) bethetimeat
whichall messagesthat areintransitattime7(K —1), K >
0, havearrived at their destination and have been processed.
The rest of proof is done by induction on K. At time
K = 0, because there are no messages to be transmitted,
the theorem holds true. Assumethat the theoremistruefor
some K = M > 0.

A path of M + 1linksistheconcatenation of an adjacent
link and apath with M links. From the definition of 7'(K),
by time T(M + 1), the routing trees computed at time
T (M) have all been communicated to the neighbors of the
nodes which computed such trees. By Lemma 2, these link
cost changes are updated in the node’s distance and routing
tables. This proves the theorem.O

Lemma4 No node in the network GG can be active after a
finitetimet for any destination.

Proof: Consider a network GG with a stable topology. We
need to consider three cases: a hode receives a query from

its neighbor, a node receives an update message from its
neighbor, and a node observes a link-cost change.

When a node receives a query from its neighbor, re-
gardless of the state of the node, the node responds to the
guery immediately either by afeasible distance (if it isin
passive state) or by sending an infinite distance (if it isin
active state). Therefore, the node cannot remain active for
an infinite time when it receives a query from aneighbor.

When an update is received by a node ¢, and if ¢ has a
feasible successor, it remains in the passive state, updates
its distance table entries within a finite time (step 1 in the
algorithm) and proceeds accordingly. If the nodeis unable
to find a feasible successor, it becomes active by sending
gueries to its neighbors. Since a node responds to all the
gueries within afinite time, the update process will aso be
donein afinitetime.

When node i observes a link-cost change, the distance
table at ¢ is updated and the routing table is updated as
defined by thefeasibility condition. Theupdated entriesat
aresent to neighbors N; as updated messages. Since update
messages are processed in finite time, link-cost changesare
also processed infinitetime. A nodefailureistreated asall
thelinksincident on the failed node going down at the same
timeand thelink cost changes can betreated asalink going
down and coming up with anew link cost. Therefore, this
will also be processed within afinite time.

Therefore, a node in G can be active only for a finite
time for any destination j. O

Lemma5 If attimet all nodesinthegraph G arereachable
from one another then, afinite time after ¢, no new update
messages are being transmitted or processed by any node,
and the entries corresponding to each destination j in all
the distance and routing tables are correct.

Proof: Given that the graph G is finite, there is a finite
number of entries in a node’s distance and routing tables.
From Lemma 4, we also have that a node cannot be active
for anindefinitely long period of time. Assumethat at time
t, al nodesin G are reachable.

After timet, let nodei receive an update message dueto
the change in the link-cost. Thisresultsin sending update
messages to all the neighbors £ € N;. From Lemma 4,
the update message will be processed in finite time after
receivingit. Also, from Theorem 1, we have correct entries
inthe node’ sdistance and routing tableswhen the algorithm
converges. ThisprovesLemmab. O

Lemma6 Assumethat attimet at leastonenodej € G is
inaccessibleto aconnected subset of nodes A; C N. Then,

no node: € A; can terminate for node j with D} < oc.

Proof: Thislemmais proved by contradiction.
Assume that node : € A; does terminate LPRA with

a finite distance at time ¢, > t; this implies that sj is

constant and Dj is constant and finite since time ¢,. Let

st(ts) = k; then because all link costs are constant after

timet, D} (t,) = D} (t,)+ dix(t). Itisobviousthat, if any
node: € A; terminatesat timet,, its successor 53 (ts) must
terminate before that time. Following the same argument,

and traversing the path i to j, it must be true that each node
z in such a path must have a constant distance Df ().

Thus, because |A_j| and D (t,) arefinite and LPRA isfree
of deadlocks and loops [12], a node » must be reached for
which D (t;) = I7}(t) and s7 (ts) = j; thisisimpossible
because j is not adjacent to any nodein A; attimet < ¢,
and every node knowsiits neighbors. Therefore, the lemma
istrue. O

Lemma?7 If thereisat least onenode j € G that isinac-
cessible to a subset of nodes in GG at time ¢ then, a finite
time after ¢, no new update messageswith an entry for node
J will be transmitted or processed by nodes, and the entries
corresponding to node j in all topology and routing tables
are correct.

Proof: By contradiction.

After time ¢, G must consist of one or more connected
components and a set of zero or more isolated nodes. Be-
cause an isolated node sets all its routing-table entries to
infinity after detecting that it has no neighbors, the proof
needs to consider only connected components.

Assume that, after time ¢, node j is unreachable from a
set of nodes that constitutes a connected component of the
graph A4;. The proof needsto show that every nodez € A;
sets Dj = oo afinitetimeafter time¢ and, therefore, cannot
change that entry to a finite value until a new topological
changeoccurs.

If noden € A;, LPRA can not terminate with afinite

distance (Lemma 6). If A; is connected, it follows from
the way in which distances and successors are updated that
either all thenodesin A; terminate with aninfinite distance,
or each of them keeps sending updates reporting changes
in its distance or update label indefinitely.

Assume that the nodesin A; do not terminate, and con-
sider the case in which node i € A; never sets D} = oo
after afinitetimet; > t. If thisisthe case, giventhat every
node in A; has a finite number of neighbors and that no
topology changes occur after time ¢, node ¢ must choose
at least one neighbor node that satisfies FC, say node s, as
its successor an infinite number of times after time ¢;. If
thisistrue for node i, the same must apply for node s and
for al the nodesin at least one path from node i to node ;.
However, every node knows its neighbors, which implies
thet after afinitetime¢; > ¢ all pathsin A; must lead to
nodes who have set their distances equal to co. Therefore,
every node in A; must send queries (reporting an infinite
distance) an infinite number of successions after a finite
time greater than or equal to time¢. From the assumption,
no nodein A; terminates, and each node has a finite num-
ber of neighbors, it follows that node i must choose some
neighbor node, say s, that satisfies FC as its successor and
report the path informationto all its neighbors« € V; after
receiving all the replies to its queries. This must occur an
infinite number of times which, however, isimpossible.

Node: € A; hasapath to the destination j only if ¢ has
D; < co. Thisisnot possible after afinite time larger than
or equal totimet, asall the nodesknow their neighborsand
itisassumedthat thereare notopological changesafter time
t. Accordingly, after afinitetimet; > ¢, whenever node ¢
updatesits routing table with afinite distance value, it must
updateits pathinformation also. Therefore, for node to be
ableto set D} < oo aninfinite number of successions after

timet, there must exist an infinite number of paths (even if
they are incomplete) from node i to node j in S; (A;) after
timet, which isimpossible because A; has afinite size.

From the above, it followsthat every node z € A; sets
Df = oo afinite time after time ¢, and the lemmais true.
O

Theorem 2 A finite time after ¢, no new update messages
are being transmitted or processed by nodesin G, and all
entriesin distance and routing tables are correct.

Proof: By contradiction.

Assumethat the transmission of update messagesreport-
ing topological changes never ceases or terminates with in-
correct valuesin the routing tables. Thisimpliesthat there
must be at least one row (call it j) of the routing tables
for which either an infinite number of update messages are
generated or incorrect information is obtained. After time
t, either all nodes are mutually reachable or at least oneis
inaccessible from a subset of nodes in the graph. AsLem-
mas 5 and 7 are true for any destination j, the theorem is
true. O

5 Performanceof LPRA

The overhead required to converge to correct routing
table entries in the worst case are computed assuming that
the algorithm behaves synchronously so that every nodein
the network executesastep of the algorithm simultaneously
at fixed pointsin time. At each step, the node receives and
processesall the inputsoriginated during the preceding step
and if required, sends update messages to the neighboring
nodes at the same step. The first step occurs when at least
one node detects a topological change and issues update
messagesto its neighbors. During thelast step, at least one
node receives and processes messages from its neighbors
and after which the node stops transmitting any update
messages till a new topological change has taken place.
The number of stepstaken for this processistermed astime
complexity (TC) and the number of messages required to
accomplish this is the communication complexity (CC).

DBF has a worst-case time complexity of O(|N|) and

worst-case communication complexity of O(|N2|), where,
N is the number of nodes in the network . In contrast,
LPRA can be shown to have TC=0O(z) and CC=0(z) [12]
where, z isthe number of nodes affected by a single topol-
ogy change.

To obtain an insight into the average performance of
LPRA, the agorithm was analyzed by simulation using
the topologies of typical networks. Simulations were per-
formed using Drama [13] along with a network simulation
library. The performance was compared with a diffusing
update algorithm DUAL [4] and an ideal link-state algo-
rithm (ILS). The simulation useslink weights of equal cost,
and zero link transmission delays. During each simulation
step, anode processes input events received during the pre-
vious step one at atime, and generates messages as needed
for each input event it processes. To obtain the average fig-
ures, the simulation makes each link (node) in the network
fail, and counts the steps and messages needed for each
algorithm to recover. It then makes the same link (node)

Table 1: Simulation Resultsfor Los-Nettos

Para- LPRA DUAL ILS
meter || mean | sdev || mean | sdev mean | sdev

I Link Failure

EC 886 | 433 49.9 18.6 290 58
PC 337 16.6 32.6 118 270 58
DUR 54 17 6.7 13 4.2 0.88
ocC 776 | 256 69.9 18.6 7241 | 273

l Link Recovery

EC 83.7 7.0 457 74 333 19
PC 151 3.8 17.0 7.2 319 19
DUR 2.8 0.6 3.7 0.9 3.86 05
ocC 97.1 18.8 65.7 7.5 9440 | 458

I Node Failure

EC 1238 | 2296 | 67.6 19.7 31.8 9.6

PC 47.3 89 457 33 26.7 7.19
DUR 59 11 7.0 1.0 4.09 0.51

ocC 1158 | 27.35 || 1136 | 40.1 7029 | 204.3

l Node Recovery

EC 1754 | 983 86.7 | 343 56.2 134

PC 26.9 10.4 39.0 11.2 511 10.8
DUR 3.6 0.83 4.7 0.5 4.4 05

ocC 2131 | 99.2 || 132.7 | 56.13 || 1698.8 | 478.4

recover and repeat the process. The average is then taken
over al link (node) failures and recoveries. The results of
this simulation for Los-Nettos are shown in Table 1. The
table shows the total number of events (updates and link-
status changes processed by nodes) (EC), the total number
of update messages transmitted (PC), the total number of
steps needed for the algorithmsto converge (DUR), and the
total number of operations performed by all the nodes in
the network (OC).

The details of simulation analysis appear in[12]. How-
ever, it isworth noting that, as expected, L PRA and DUAL
have better overall average performance than ILS after the
recovery of asingle node or alink. The simulation results
also indicate that, insofar as overhead traffic is concerned,
the average performance of LPRA iscomparableto DUAL
and ILS. LPRA converges faster than DUAL in all cases,
in particular, LPRA is more responsivein the case of node
failures, which is a concern in DUAL’s performance [4].
CPU utilization on ILS is two orders of magnitude larger
than in LPRA and DUAL. On the other hand, LPRA con-
vergesin almost the same number of stepsas|L S after link
and node failures. Accordingly, LPRA constitutes a more
scalable solution for routing in large internetsthan ILS and
even DUAL.

6 Conclusions

In this paper, we have presented a routing algorithm
(LPRA) that eliminates the formation of temporary rout-
ing loops without the need for internodal synchronization

spanning multiple hops or the specification of complete
path information. LPRA works on the notion of using in-
formation about the second to last hop of shortest paths
to ensure termination, and an efficient interneighbor coor-
dination mechanism to eliminate temporary loops. A de-
tailed proof of the correctness and loop-freedom of LPRA
ispresented and itscomplexity isanalyzed. Theworst-case
complexity of LPRA for single recovery/failureisO(x), «
being the number of nodes affected by thisrecovery/failure.
LPRA is compared with DUAL and an ideal link state al-
gorithm (ILS) by simulation. The simulation results show
that LPRA convergesfaster than DUAL for single-resource
changes and the number of messages exchanged is compa-
rableto DUAL.

References

[1] C. Cheng, R. Reley, S. P R Kumar and J. J. Garcia-
Luna-Aceves, “A Loop-Free Extended Bellman-Ford
Routing Protocol without Bouncing Effect”, ACM
Computer Communications Review, Vol.19, No.4,
1989, pp.224-236.

[2] L.R. Ford and D.R. Fulkerson, Flow in Networks,
Princeton University Press, Princeton, New Jersey,
1962.

[3] JM. Jaffe and FM. Moss, “A Responsive Routing
Algorithm for Computer Networks’, |EEE Trans.
Comm., Vol.30, July 1982, pp.1758-1762.

[4] J. J. Garcia-Luna-Aceves, “Loop-free Routing using
Diffusing Computations’, |EEE/ACM Transactions
on Networking, Vol. 1, No. 1, Feb, 1993, pp.130-141.

[5] J. J. Garcia-Luna-Aceves, “Distributed Routing with
Labeled Distances’, | EEE Infocom, Vol.2, May 1992,
pp.633-643.

[6] J. J. Garcia-Luna-Aceves, “LIBRA: A Distributed
Routing Algorithm for Large Internets’, Proceedings
of |IEEE Globecom, Vol.3, Dec 1992, pp.1465-1471.

[7] J. Hagouel, “Issues in Routing for Large and Dy-
namic Networks," IBM Research Report RC 9942
(No. 44055) Communications, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York,
April 1983.

[8] PA. Humblet, “Another Adaptive Shortest-Path Al-
gorithm”, |EEE Trans. Comm., Vol.39, No.6, June
1991, pp.995-1003.

[9] PM. Merlin and A. Segall, “A Failsafe Distributed
Routing Algorithm”, IEEE Trans. Comm., Vol.27,
Sept. 1979, pp.1280-1288.

[10] B. Rajagopalan and M. Faiman, “A Responsive Dis-
tributed Shortest-Path Routing Algorithm within Au-
tonomous Systems,” Internetworking: Research and
Experience, Vol.2, No.1, March 1991, pp. 51-69.

[11] M.S. Slomanand X. Andriopoulos, “A Routing Algo-
rithmfor Interconnected L ocal AreaNetworks’, Com-
puter Networksand I1SDN Systems, 1985, pp.109-130.

[12] Shree Murthy, “Design and Analysis of Distributed
Routing Algorithms’, Master’s Thesis, University of
California, Santa Cruz, June 1994.

[13] W. T. Zaumen, “Simulations in Drama’, Network
Information System Center, SRl International, Menlo
Park, California, January 1991.

